Line 4Line 4 Copyic/close/grey600play_circle_outline - material

ARTICLE: Drought Tolerance: Recent Efforts In Biotechnology

The following is an excerpt of a blog post at Bioscription detailing the latest research studying drought-resistance and genetically modified crops. 

Drought continues to be a primary driver of famine and crop loss around the world, with the accompanied water shortages not only affecting food production, but also drinking water availability. It is predicted that, by 2025, over two and a half billion people will be facing those sort of water shortages, especially as the effects of climate change worsen.

For agriculture, there are several crops that have been found to be specially sensitive to drought due to their high liquid content and growing conditions, such as soybeans and rice. Since these foods make up major staples for dozens of countries around the world, the ability to combat the impact of drought is of high importance. It is estimated that food production in rice-primary countries will need to increase by 40% in the next ten years to not only meet demand, but to also offset the crop losses from a changing environment. Food security has never been more important.

Thanks to modern biotechnology, however, new genetic improvement techniques have allowed for the development and testing of crops with far more in-depth changes than ever before. The Omics fields have reached a level where we can move beyond just transferring traits and instead focus on altering regulatory pathways that control traits overall. Transcription factors, signaling molecules, cytokinin metabolism and more are steadily being unveiled as options for cascading effects beyond single changes, allowing for far greater improvements.

To read the entire blog post, please visit the Bioscription website